The unique labelling of states via Mackey's theorem

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1984 J. Phys. A: Math. Gen. 17253
(http://iopscience.iop.org/0305-4470/17/2/013)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 07:51

Please note that terms and conditions apply.

The unique labelling of states via Mackey's theorem

K S Chan and D J Newman
Department of Physics, University of Hong Kong, Hong Kong

Received 14 July 1983, in final form 19 August 1983

Abstract

A new approach to finding unique labels for many-electron states in multicentre systems is described and a particular example (eight electrons in s-states on eight centres) is worked out in detail. This approach is shown to provide a labelling with a more direct physical interpretation than has previously been found.

1. Introduction

This paper is one of a series developing new methods for labelling the states of multicentre systems using the permutation group. The optimal choice of labelling methods is important in the physical interpretation of solutions as well as in the mathematical process of diagonalising Hamiltonians. 'Unique' labelling methods have the property that every state is completely described by a set of irreducible representation labels for groups characterising the system.

The long term aim of this series of papers is to find exact solutions to the generalised Hubbard model for a variety of systems with a finite number of centres. These solutions can then be used as a test of approximative methods and to determine the forms of model Hamiltonian which most adequately describe electron localisation and intermediate valence phenomena.

Unique labelling in terms of the irreducible representation labels for a chain of groups depends on unique labelling for every group/subgroup link in the chain. This holds when the subduction (or reduction) of every irreducible representation of the group corresponds to a combination of irreducible representation labels of the subgroup with no repeats. The power of this method is considerably enhanced by the reciprocity theorem due to Frobenius (e.g. see Ledermann 1977, p 74), which states that the correlation tables for induced representations are the same as those for subduced representations. Hence unique labelling by subduction implies unique labelling by induction. In practice the choice between these procedures will be determined by which group in the chain is used to characterise the physical basis vectors.

In a recent paper (Chan and Newman 1983, henceforth referred to as paper II) it has been shown possible to obtain a unique group theoretical labelling of all the many electron states generated by $l(<2 n)$ electrons in s-states on n centres. S_{n} and its permutation subgroups were used in this labelling. Furthermore, it was shown possible, by introducing subgroup chains relating spatial symmetry groups to S_{8}, to obtain unique labels for all the states for systems where eight centres are fixed in cyclic regions (Chan and Newman 1982, henceforth referred to as paper I) or rigid isolated systems.

A feature of the above approach to S_{n} labelling is that comparisons were made between a combinatoric method based on Polya's theorem (Newman 1982) and a purely group theoretical method based on induced representation theory. Although the combinatoric method was shown to lead to a correct enumeration of the states (for $n=8$), it did not provide sufficient information for a unique labelling. The main problem with this approach is that it classifies states (colourings or other structures defined on the lattice) as equivalence classes of S_{n}, which may then be difficult to resolve uniquely into equivalence classes of the spatial symmetry group (e.g. see the discussion in Newman (1982) and in § 4 of this work).

In this paper we shall present a third approach to this same problem which is as powerful as the induced representation approach and yet provides the heuristic advantage, characteristic of the combinatorial method, of identifying equivalence class groups. The relationship between the induced representation approach and our present techniques is shown symbolically in figure 1 . The group S_{n} is decomposed into double cosets $H d K$, where the d 's are a set of elements of S_{n} (called 'double coset representatives') chosen so that the corresponding set of double cosets spans all the elements in S_{n}. In II we labelled the states spanned by S_{n} by first inducing representations of H into S_{n} to provide a unique labelling of the S_{n} states, and then subducing these into K. Here we shall first obtain the set of intersection groups L^{d} and then determine the subduced representation labels for the chains $H^{d} \supset L^{d}$ and $K \supset L^{d}$ (with suitable intermediate groups).

Figure 1. Subgroup relations relevant to the application of Mackey's theorem.

From the combinatoric point of view each total spin state S and M_{S} value of a configuration of states is regarded as a 'structure' defined on the n centres. Any state of the configuration (with given S, M_{S}) may be transformed into any other state with the same S, M_{S} values under S_{n}. Hence the set of all states of a configuration with given S, M_{S} may be regarded as a single equivalence class with respect to S_{n}. This generalises the classical notion of an equivalence class because the antisymmetry of the states under particle exchange leads us to introduce negative characters (as in II, table 2). In Newman (1982) it was remarked that every equivalence class could be related to the subgroup which left the structure generating the equivalence class invariant. The configuration groups are seen to fulfil this role in the present work for equivalence classes with respect to S_{n}, although we do not restrict ourselves to the
identity representation of the configuration groups as is done in simple colouring problems.

A single equivalence class with respect to S_{n} will generally break into several equivalence classes with respect to its subgroups and, in particular, with respect to those subgroups which correspond to rigid spatial (or cyclic region) arrays of the n centres. As was remarked by Newman (1982), it is far from trivial to determine the way in which equivalence classes with respect to S_{n} break down into equivalence classes with respect to spatial symmetry subgroups of S_{n}. The equivalence class groups generated by the total spin eigenstate configurations of eight electrons in s-states on eight centres will be the focus of our present investigation. We note that they can be identified with the groups L^{d} of figure 1 , for these are the possible intersection groups between the configuration groups H^{d} and the spatial symmetry group K.

2. General formulation

The method we shall use is based on Mackey's theorem (Altmann 1977) and is related to the use of this theorem in labelling suggested by Newman (1983). Given the double coset decomposition of S_{n},

$$
\begin{equation*}
\mathrm{S}_{n}=\sum_{d} H d K \tag{2.1}
\end{equation*}
$$

where the symbols have the interpretation given in the previous section, Mackey's theorem relates the representations as follows:

$$
\begin{equation*}
(\Delta \uparrow G) \downarrow K=\sum_{d}\left(\Delta^{d} \downarrow L^{d}\right) \uparrow K \tag{2.2}
\end{equation*}
$$

where \uparrow, \downarrow represent induction and subduction, Δ is a representation of H and $\Delta^{d}\left(d^{-1} h d\right)=\Delta(h), h \in H$. Equation (2.2) neatly relates the paths in figure 1 used in our previous labelling scheme (on the left-hand side) with those we shall use in the present approach (on the right-hand side).

In our new approach the first problem to be solved is to determine the set of groups $L^{d}=K \cap H^{d}$ corresponding to the intersection of the configuration symmetry (H^{d}) and the spatial symmetry K. This problem is best solved in non-trivial cases by symbolic computation (see the appendix). Character tables then have to be established for the groups L^{d}. There must then be chains of intermediate groups between L^{d} and H^{d} and between L^{d} and K in order to ensure unique labelling for the subduction and induction processes on the right-hand side of (2.2).

3. A worked example: eight electrons on eight sites

We shall presume that the spatial symmetry of the eight sites is given by the 192-element cyclic region group described in I and denoted here by $G(192)$.

It may also be of interest to the reader that the 384 -element group called $\mathrm{O}^{5} / 2 \mathrm{FCC}$ in I is mentioned (among others) in the work of Koptsik and Evarestov (1980) as an 'extended unit cell group'. A distinct 384 -element cyclic region group with 20 classes also mentioned in that paper (as a factor group of O_{h}^{7}) is isomorphic with the hyperoctahedral group which has the character table given by Baake et al (1982).

We shall adopt the same notation for the irreducible representations of $G(192)$ as was employed in I and shall not reproduce the character table here. Note that many other spatial symmetries correspond to subgroups of $G(192)$, so that a solution for $G(192)$ can be used to provide a range of other solutions.

The elements of $G(192)$ will be described using a two-number notation in which the first number denotes one of the 24 rotations defined by figure 2 and table 1 , and the second is one of the eight cyclic translations defined by the centre labels in the same figure. For example, $\boldsymbol{t}_{2} \equiv(1,2)$ denotes a translation from centre 1 to centre 2 (or a parallel translation of the same magnitude). In particular, $\boldsymbol{t}_{1} \equiv(1,1)$ is the identity operation. We shall identify the intersection groups L^{d} with a set of elements given in this notation.

As discussed in II there are five configurations for a system with eight electrons on eight sites according to whether no pairing of up and down spin electrons on a given site occurs (with configuration group S_{8}), one such pair occurs ($\mathrm{S}_{1} \otimes \mathrm{~S}_{1} \otimes \mathrm{~S}_{6}$), two pairs occur ($\mathrm{S}_{2} \otimes \mathrm{~S}_{2} \otimes \mathrm{~S}_{4}$), three pairs occur $\left(\mathrm{S}_{3} \otimes \mathrm{~S}_{3} \otimes \mathrm{~S}_{2}\right)$ or all eight electrons are

Figure 2. The eight distinct atoms in the cyclic region are shown together with labelling of rotation axes used in this work. Translations are labelled relative to the atomic positions relative to the central atom 1 .

Table 1. Dictionary for the numerical labelling of the elements of the octahedral group. The axis labels are shown in figure 2.

Label	1	2	3	4	5	6	7	8
Rotation	E	$\mathrm{C}_{2 x}$	$\mathrm{C}_{2 y}$	$\mathrm{C}_{2 z}$	$\mathrm{C}_{4 x}^{+}$	$\mathrm{C}_{4 x}^{-}$	$\mathrm{C}_{4 y}^{+}$	$\mathrm{C}_{4 y}^{-}$
Label	9	10	11	12	13	14	15	16
Rotation	$\mathrm{C}_{4 z}^{+}$	$\mathrm{C}_{4 z}^{-}$	$\mathrm{C}_{3 \mathrm{~A}}^{+}$	$\mathrm{C}_{3 \mathrm{~A}}^{-}$	$\mathrm{C}_{3 \mathrm{~B}}^{+}$	$\mathrm{C}_{3 \mathrm{~B}}^{-}$	$\mathrm{C}_{3 \mathrm{C}}^{+}$	$\mathrm{C}_{3 \mathrm{C}}^{-}$
Label	17	18	19	20	21	22	23	24
Rotation	$\mathrm{C}_{3 \mathrm{D}}^{+}$	$\mathrm{C}_{3 \mathrm{D}}^{-}$	$\mathrm{C}_{2}^{\prime}(5)$	$\mathrm{C}_{2}^{\prime}(8)$	$\mathrm{C}_{2}^{\prime}(7)$	$\mathrm{C}_{2}^{\prime}(6)$	$\mathrm{C}_{2}^{\prime}(4)$	$\mathrm{C}_{2}^{\prime}(3)$

paired $\left(S_{4} \otimes \mathrm{~S}_{4}\right)$. The groups L^{d} for each of these configurations have been calculated using the methods described in the appendix. Symbols for the groups L^{d} are defined in terms of their elements below and table 2 relates to isomorphic point groups.

Table 2. Complete list of the groups L^{d} for all configurations of eight electrons in s-states on eight centres. Identifications are given with point groups, daggers indicating isomorphism but not physical equivalence. Coloration symbols denote the effect of the transformation $d^{-1}\left(\mathrm{~S}_{u} \otimes \mathrm{~S}_{u} \otimes \mathrm{~S}_{8-2 \mu}\right) d$, e.g. for $\mathrm{G}_{2}, d^{-1}\left(\mathrm{~S}_{2}\{12\} \otimes \mathrm{S}_{2}\{34\} \otimes \mathrm{S}_{4}\{5678\}\right) d=\mathrm{S}_{2}\{12\} \otimes \mathrm{S}_{2}\{36\} \otimes$ $\mathrm{S}_{4}\{5478\}$ denoted by $\{12\}\{36\}\{5478\}$.

Configuration group	$L^{\text {d }}$ group		$\left\|L^{d}\right\|$	Coloration	References
S_{8}	G (192)	G (192)	192	\{12345678\}	Chan and Newman (1982)
$\mathrm{S}_{1} \otimes \mathrm{~S}_{1} \otimes \mathrm{~S}_{6}$	F_{1}	O	24	\{1\}\{2\}\{345678\}	-
	F_{2}	D_{2}^{\prime}	4	\{1\}\{3\}\{245678\}	-
$\mathrm{S}_{2} \otimes \mathrm{~S}_{2} \otimes \mathrm{~S}_{4}$	G_{1}	D_{2}^{+}	4	\{12\}\{34\}\{5678\}	-
	G_{2}	$\mathrm{D}_{4} \otimes\left\{\mathrm{E}, \mathrm{t}_{2}\right\}$	16	\{12\}\{36\}\{5478\}	as for $\mathrm{D}_{4} \otimes \mathrm{C}_{5}$
	G_{3}	C_{1}	1	$\{13\} 24\}\{5678\}$	-
	G_{4}	$\mathrm{D}_{2} \otimes\left\{\mathrm{E}, \boldsymbol{t}_{3}\right\}$	8	\{13\}\{26\}\{4578\}	as for $\mathrm{D}_{2} \otimes \mathrm{C}_{s}$
	G_{5}	D_{2}^{\dagger}	4	\{13\}\{45\} 2678$\}$	-
	G_{6}	D_{2}^{+}	4	\{13\}\{47\}5628\}	-
	G_{7}	$\mathrm{C}_{2} \otimes\left\{\mathrm{E}, \boldsymbol{t}_{3}\right\}$	4	$\{13\}\{48\}\{2567\}$	as for D_{2}
$\mathrm{S}_{3} \otimes \mathrm{~S}_{3} \otimes \mathrm{~S}_{2}$	H_{1}	C_{2}^{+}	2	\{123\}456\}\{78\}	-
	H_{2}	C_{2}^{+}	2	$\{123\}\{457\}\{68\}$	-
	H_{3}	D_{2}^{+}	4	\{123\}\{467\} 588	-
	H_{4}	C_{2}^{+}	2	$\{134\}\{256\}\{78\}$	-
	H_{5}	C_{2}^{+}	2	\{134\}\{258\}\{67\}	-
	H_{6}	D_{3}^{+}	6	\{134\}267\}58\}	-
	H_{7}	C_{2}^{+}	2	\{134\}\{268\}\{57\}	-
$S_{4} \otimes S_{4}$	I_{1}	D_{2}^{+}	4	\{1234\}\{5678\}	-
	I_{2}	$\mathrm{D}_{4} \wedge\left\{\mathrm{E}, \boldsymbol{t}_{2}, \boldsymbol{t}_{3}, \boldsymbol{t}_{6}\right\}$	32	\{1236\} 5478 \}	Table 3
	I_{3}	O^{+}	24	\{1345\} \{2678\}	-
	I_{4}	$D_{3} \otimes\left\{E, \boldsymbol{t}_{3}, \boldsymbol{t}_{4}, \boldsymbol{t}_{8}\right\}$	24	\{1348\}\{2567\}	as for O

3.1. Configurations S_{8}

As $\mathrm{S}_{8} \supset \mathrm{G}(192), \mathrm{G}(192)$ itself is the only L^{d} group.

3.2. Configurations $S_{1} \otimes S_{1} \otimes S_{6}$

The double coset decomposition involves two groups which will be denoted F_{1} and F_{2}. Both groups do not contain any cyclic translations and we can identify $\mathrm{F}_{1}=\mathrm{O}$ (as defined by figure 2) and $F_{2}=\{(1,1),(2,1),(22,1),(24,1)\}=D_{2}^{\prime}$. Here the prime distinguishes a subgroup of O containing two C_{2}^{\prime} axes.

3.3. Configurations $S_{2} \otimes S_{2} \otimes S_{4}$

In this case the double coset decomposition requires seven groups as follows:
$\mathrm{G}_{1}=\{(1,1),(4,2),(19,2),(20,1)\}$
$\mathrm{G}_{2}=\{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2),(4,1),(4,2),(5,1),(5,2)$, $(6,1),(6,2),(22,1),(22,2),(24,1),(24,2)\} \equiv D_{4} \otimes\left\{E, t_{2}\right\}$
$\mathrm{G}_{3}=(1,1) \equiv \mathrm{C}_{1}$
$\mathrm{G}_{4}=\{(1,1),(1,3),(2,1),(2,3),(22,1),(22,3),(24,1)(24,3)\} \equiv \mathrm{D}_{2} \otimes\left(\mathrm{E}, \boldsymbol{t}_{3}\right)$
$\mathrm{G}_{5}=\{(1,1),(2,3),(22,1),(24,3)\}$
$\mathrm{G}_{6}=\{(1,1),(2,1),(22,3),(24,3)\}$
$\mathrm{G}_{7}=\{(1,1),(1,3),(24,1),(24,3)\} \equiv \mathrm{C}_{2} \otimes\left\{\mathrm{E}, \mathrm{t}_{3}\right\}$.

3.4. Configuration $S_{3} \otimes S_{3} \otimes S_{2}$

In this case there are given seven groups in the double coset decomposition:

$$
\begin{aligned}
& \mathrm{H}_{1}=\{(1,1),(22,1)\} \\
& \mathrm{H}_{2}=\{(1,1),(3,2)\} \\
& \mathrm{H}_{3}=\{(1,1),(2,1),(3,2),(4,2)\} \\
& \mathrm{H}_{4}=\{(1,1),(24,3)\} \\
& \mathrm{H}_{5}=\{(1,1),(20,1)\} \\
& \mathrm{H}_{6}=\{(1,1),(11,3),(12,4),(20,1),(23,4),(24,3)\} \\
& \mathrm{H}_{7}=\{(1,1),(24,3)\} .
\end{aligned}
$$

3.5. Configuration $S_{4} \otimes S_{4}$

The double coset decomposition requires only four groups in this case:
$I_{1}=\{(1,1),(4,2),(19,2),(20,1)\}$
$i_{2} \because \mathrm{D}_{4} \wedge\left(\mathrm{E}, \boldsymbol{t}_{2}, \boldsymbol{t}_{3}, \boldsymbol{t}_{6}\right)$,
where D_{4} is identical to that defined by the list of elements for G_{2}
$I_{3}=\{(1,1),(2,3),(3,4),(4,5),(5,4),(6,5),(7,5),(8,3),(9,4),(10,3)$, $(11,3),(12,4),(13,1),(14,1)$, $(15,3),(16,5),(17,4),(18,5),(19,5)$, $(20,1),(21,1),(22,1),(23,4),(24,3)\}$
$I_{4}=\{(1,1),(1,8),(1,4),(1,3),(11,1),(11,8),(11,4),(11,3),(12,1),(12,8)$, $(12,4),(12,3),(20,1),(20,8),(20,4),(20,3),(23,1),(23,8)$, $(23,4),(23,3),(24,1),(24,8),(24,4),(24,3)\}$
$\equiv \mathrm{D}_{3} \otimes\left\{\mathrm{E}, \boldsymbol{t}_{3}, \boldsymbol{t}_{4}, \boldsymbol{t}_{8}\right\}$.
Chains of subgroups relating all these groups with $G(192)$ are shown in figure 3. In most cases the character tables of these groups are well known because of isomorphisms with the point groups. An exceptional case is I_{2}, and the character table for this
group is given in table 3. Using the character tables we are then able to generate correlation relations, the most important of which are given in tables 4-8. These show that the reduction $\Delta^{d} \downarrow L^{d}$ of (2.2) can be labelled uniquely in this configuration.

Figure 3. Subgroup relations between groups listed in table 1. The group $U=\left\{E, t_{2}\right\}$. Other groups are defined in table 1 and in the text. D_{4} is assumed to have its C_{4} axis aligned in the x direction, while D_{4}^{\prime} has a z alignment. Correlation tables $4-7$ show that the group/subgroup relations in this figure provide a unique labelling of the $G(192)$ representations of all states of the eight-electron system.

The remaining problem is to find a unique labelling scheme for the group/subgroup chains connecting the configuration groups $\mathrm{S}_{u} \otimes \mathrm{~S}_{u} \otimes \mathrm{~S}_{8-2 u}$ with the L^{d}. The states to be considered can be derived from the columns of table 1 of II with $n=8-2 u=8,6$, 4,2 and 0 .

3.6. Configuration S_{8}

In this case it is necessary to find a chain of groups relating S_{8} to $G(192)$ which allows for a unique labelling of the S_{8} representations of interest as identified by the $n=8$ column in table 1 of II. A general solution of this labelling problem was given in I by introducing as intermediate groups the alternating group A_{8} and the subgroup [8] + $\left[4^{2}\right]+\left[2^{4}\right]+\left[1^{8}\right]$ (in the notation of Littlewood (1958, appendix)). As this was the least straightforward problem to solve using the previous method, it cannot be claimed that the present approach simplifies the analysis.

Table 3. Character table for the group $I_{2}=D_{4} \wedge\left(E, t_{2}, t_{3}, t_{6}\right)$. Class labels are defined by figure 2 with the C_{4} axis in the x direction and as follows. $t\left(=t_{2}\right)$ is a translation along the C_{4} axis; $\boldsymbol{t}_{\mathrm{b}}\left(=t_{3}\right.$ or $\left.\boldsymbol{t}_{6}\right)$ is a translation in the 'basal plane', perpendicular to the C_{4} axis; $\mathrm{C}_{2}=\mathrm{C}_{4}^{2} ; \mathrm{C}_{2 b}$ is about an axis in the basal plane in the primitive vector direction; $\mathrm{C}_{2 b}^{\prime}$ is about axes at 45° to the $\mathrm{C}_{2 \mathrm{~b}}$ in the basal plane. $\mathrm{C}_{2 b} t_{b}$ has t_{b} and the C_{2} axis parallel, while $\mathrm{C}_{2 \mathrm{~b}} t_{\mathrm{b}}^{1}$ has them perpendicular. $\mathrm{C}_{4} t$ and $\mathrm{C}_{2 \mathrm{~b}}^{\prime} t$ each have two members corresponding to pure rotations, and two combining these with t.

Class	E	C_{2}	C_{2} t	$\mathrm{C}_{2 \mathrm{~b}}{ }^{\prime}$	$\mathrm{C}_{2 \mathrm{~b}}$	$\mathrm{C}_{2 \mathrm{t}} \mathrm{t}^{\text {I }}$	$t_{\text {b }}$	$\mathrm{C}_{2} t_{\text {b }}$	$\mathrm{C}_{2 \mathrm{~b}} t_{\mathrm{b}}$	$\mathrm{C}_{2 \mathrm{~b}} \boldsymbol{t}_{\text {b }}$	t		$t_{6} \mathrm{C}_{4}$ t	$\mathrm{C}_{4} t_{\mathrm{b}}$
Order	1	1	1	4	2	2	2	2	2	2	1	4	4	4
(D_{4}) A_{1}^{5}	1	1	1	1	1	1	1	1	1	1	1	1	1	1
A_{2}^{Γ}	1	1	1	-1	-1	-1	1	1	-1	-1	1	-1	1	1
B_{1}^{Γ}	1	1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1
B_{2}^{Γ}	1	1	1	-1	1	1	1	1	1	1	1	-1	-1	-1
E^{Γ}	2	-2	-2	0	0	0	2	-2	0	0	2	0	0	0
(D_{4}) $\mathrm{A}_{1}^{\mathrm{M}}$	1	1	1	1	1	-1	-1	-1	1	-1	1	-1	1	-1
$\mathrm{A}_{2}^{\mathrm{M}}$	1	1	1	-1	-1	1	-1	-1	-1	1	1	1	1	-1
$\mathrm{B}_{1}^{\mathrm{M}}$	1	1	1	1	-1	1	-1	-1	-1	1	1	-1	-1	1
$\mathrm{B}_{2}^{\text {M }}$	1	1	1	-1	1	-1	-1	-1	1	-1	1	1	-1	1
E^{M}	2	-2	-2	0	0	0	-2	2	0	0	2	0	0	0
(D_{2}) $\mathrm{A}_{1}^{\mathrm{R}}$	2	2	-2	0	2	0	0	0	-2	0	-2	0	0	0
$\mathrm{B}_{1}^{\mathrm{R}}$	2	2	-2	0	-2	0	0	0	2	0	-2	0	0	0
$\mathrm{B}_{2}^{\mathrm{R}}$	2	-2	2	0	0	2	0	0	0	-2	-2	0	0	0
$\mathrm{B}_{3}^{\mathrm{R}}$	2	-2	2	0	0	-2	0	0	0	2	-2	0	0	0

3.7. Configuration $S_{1} \otimes S_{1} \otimes S_{6}$

The S_{6} representations may be reduced with respect to the octahedral group $\mathrm{F}_{1} \equiv \mathrm{O}$ by noting the following correspondence between classes (see figure 2):

$$
\begin{array}{llllll}
\mathrm{S}_{6} \text { classes: } & 1^{6} & 1^{2} 2^{2} & 1^{2} 4 & 3^{2} & 2^{3} \\
\text { O classes: } & \mathrm{E} & \mathrm{C}_{2} & \mathrm{C}_{4} & \mathrm{C}_{3} & \mathrm{C}_{2}^{\prime} .
\end{array}
$$

Comparison of the character tables then gives the following subductions of the configuration group representations:

$$
\begin{aligned}
& {\left[2^{3}\right] \rightarrow \mathrm{A}_{1}+\mathrm{A}_{2}+\mathrm{T}_{2} \quad\left[2^{2} 1^{2}\right] \rightarrow \mathrm{A}_{1}+\mathrm{E}+\mathrm{T}_{1}+\mathrm{T}_{2}} \\
& {\left[21^{4}\right] \rightarrow \mathrm{E}+\mathrm{T}_{2} \quad\left[1^{6}\right] \rightarrow \mathrm{A}_{1} .}
\end{aligned}
$$

In the case $\mathrm{F}_{2} \equiv \mathrm{D}_{2}^{\prime}$ a direct correlation between the irreducible representations does not lead to a unique labelling. We may, however, introduce an intermediate octahedral group which will enable a unique labelling to be made following the chain

$$
S_{1}(1) \otimes S_{1}(3) \otimes S_{6}(245678) \supset O^{\prime} \supset D_{2}^{\prime}
$$

In this equation O^{\prime} is the transform of O produced by interchanging the centre labels 2 and 3 . We may then use the correlations given above for the first link in the chain and table 4 of I for the second link.

3.8. Configuration $S_{2} \otimes S_{2} \otimes S_{4}$

Correlation relations for all the L^{d} groups of this configuration are given in table 4 . This table shows that all reductions are unique except for the case of G_{3} and G_{4}, so

Table 4. Correlation relations for L^{d} groups of the configuration $S_{2} \otimes S_{2} \otimes S_{4}$. Bracketed (isomorphic) groups indicate the irreducible representation labelling that is employed.

S_{4} representation:	$\left[2^{2}\right]$	$\left[21^{2}\right]$	$\left[1^{4}\right]$
$\mathrm{G}_{1}, \mathrm{G}_{6}$ and $\mathrm{G}_{9}\left(\mathrm{D}_{2}\right)$	$\mathrm{A}_{1}+\mathrm{B}_{2}$	$\mathrm{~B}_{1}+\mathrm{B}_{2}+\mathrm{B}_{3}$	$\mathrm{~B}_{2}$
$\mathrm{G}_{2}\left(\mathrm{D}_{4} \otimes \mathrm{C}_{s}\right)$	$\mathrm{A}_{1 \mathrm{~g}}+\mathrm{B}_{2 \mathrm{~g}}$	$\mathrm{E}_{u}+\mathrm{A}_{2 g}$	$\mathrm{~B}_{2 \mathrm{~g}}$
$\mathrm{G}_{4}\left(\mathrm{D}_{2} \otimes \mathrm{C}_{s}=\mathrm{D}_{2 \mathrm{~h}}\right)$	$2 \mathrm{~A}_{1 \mathrm{~g}}$	$\mathrm{~B}_{1 \mathrm{u}}+\mathrm{B}_{2 \mathrm{u}}+\mathrm{B}_{3 \mathrm{~g}}$	$\mathrm{~A}_{1 g}$
$\mathrm{G}_{5}\left(\mathrm{D}_{2}\right)$	$\mathrm{A}_{1}+\mathrm{B}_{1}$	$\mathrm{~B}_{1}+\mathrm{B}_{2}+\mathrm{B}_{3}$	$\mathrm{~B}_{1}$

that further consideration will only be given to these two cases. We are interested in the action of this group on the four centre labels 4578 which are permuted by S_{4} (see table 2). In this case the elements $(1,3)$ and $(24,1)$ (for example) of G_{4} cannot be distinguished, both corresponding to the permutation (48)(57). We therefore find that G_{4} reduces to a group G_{4}^{\prime} which is isomorphic to D_{2} when acting on the centre labels 4578, namely

$$
\mathrm{G}_{4}^{\prime}:(4)(5)(7)(8),(47)(58),(45)(78),(48)(57) .
$$

We are therefore concerned to find a group intermediate between this group and S_{4}. A suitable group is obtained by introducing the additional elements (48)(5)(7), $(57)(4)(8),(4785)$ and (4587) giving a group isomorphic to $\mathrm{D}_{2 d}$ which may be related to S_{4} through its isomorphism to T_{d}. The appropriate correlations are shown in table 5.

Finally we note that all the representations of C_{1} can be labelled uniquely by using the sequence $C_{1} \subset D_{2}^{\prime} \subset S_{4}$, where the relation between D_{2}^{\prime} and S_{4} is isomorphic to that between G_{1} and S_{4} (see table 3).

Table 5. Correlation table for G_{4} using an intermediate group isomorphic to $D_{2 d}$ (see text).

S_{4} / T_{d}	$D_{2 d}$	$G_{4}\left(D_{2}\right)$
$\left[2^{2}\right] / E$	$A_{1}+B_{1}$	$\left(A_{1}\right) A_{1}+B_{1}\left(A_{1}\right)$
$\left[21^{2}\right] / T_{1}$	$E+A_{2}$	$\left(E_{1}\right) B_{1}+(E) B_{2}+\left(A_{2}\right) B_{3}$
$\left[1^{4}\right] / A_{1}$	A_{1}	$\left(A_{1}\right) A_{1}$

3.9. Configuration $S_{3} \otimes S_{3} \otimes S_{2}$

In this case there are only two one-dimensional representations of S_{2} to consider. Their reductions with respect to the groups H_{i} are shown in table 6. There are no problems with unique labelling as the S_{2} representation labels are themselves unique.

Table 6. Correlation table for the group H_{i}.

S_{2}	$\mathrm{H}_{1}\left(\mathrm{C}_{2}\right)$	$\mathrm{H}_{2}\left(\mathrm{C}_{2}\right)$	$\mathrm{H}_{3}\left(\mathrm{D}_{2}\right)$	$\mathrm{H}_{4}\left(\mathrm{C}_{2}\right)$	$\mathrm{H}_{5}\left(\mathrm{C}_{2}\right)$	$\mathrm{H}_{6}\left(\mathrm{D}_{3}\right)$	$\mathrm{H}_{7}\left(\mathrm{C}_{2}\right)$
$[2]$	A	A	A_{1}	A	A	$\mathrm{~A}_{1}$	A
$\left[1^{2}\right]$	B	A	B_{2}	A	B	$\mathrm{~A}_{1}$	A

3.10. Configuration $S_{4} \otimes S_{4}$

The $[4] \otimes[4]$ representation is one-dimensional, so that no labelling problems arise.

4. A comparison of methodology

In this section we shall compare the labelling schemes for eight electrons in s -states on eight centres developed in II with that developed in the present work. For this purpose it will be sufficient to compare these approaches for the configuration $1^{6} 2$. According to table 3 of II there are 3584 states in this configuration. A combinatoric method was used to obtain the S_{8} characters for these states corresponding to their M_{S} values (see table 2 of II). This method was based on looking at the possible ways of 'colouring' a certain number of centres with labels corresponding to the spin arrangement on each centre, etc (i.e. $a \equiv \uparrow, b \equiv \downarrow, c \equiv \uparrow \downarrow$). In fact the combinatorial results in table 2 of II can readily be obtained by inducing the identity representation of the 'colouring' group $\mathrm{S}_{\alpha} \otimes \mathrm{S}_{\beta} \otimes \mathrm{S}_{\gamma} \otimes \mathrm{S}_{8-\alpha-\beta-\gamma}$ where α is the number of a labels, β the number of b 's and γ the number of c 's. These colouring groups are in fact subgroups of the configuration groups $\mathrm{S}_{\alpha+\beta} \otimes \mathrm{S}_{\gamma} \otimes \mathrm{S}_{8-\alpha-\beta-\gamma}$ used in the group theoretical approach of II.

In order to cope with the antisymmetry of electrons under interchange a rather ad hoc extension of the combinatorial procedure was introduced in II. This can easily be shown to correspond to inducing the representation $\left[1^{\alpha}\right] \otimes\left[1^{\beta}\right] \otimes[\gamma] \otimes[8-\alpha-\beta-\gamma]$ rather than the identity representation $[\alpha] \otimes[\beta] \otimes[\gamma] \otimes[8-\alpha-\beta-\gamma]$.

With this reformulation of the combinatoric method in group theoretical terms it becomes easy to obtain unique labels for the irreducible representations corresponding to M_{S} labels. We simply insert the same series of intermediate groups that was used in the group theoretical (i.e. configuration group) approach in II, namely

$$
\mathrm{S}_{n} \supset \mathrm{~S}_{m} \otimes \mathrm{~S}_{n-m} \supset \mathrm{~S}_{m} \otimes \mathrm{~S}_{\gamma} \otimes \mathrm{S}_{n-\gamma-m} \supset \mathrm{~S}_{\alpha} \otimes \mathrm{S}_{\beta} \otimes \mathrm{S}_{\gamma} \otimes \mathrm{S}_{n-\alpha-\beta-\gamma}
$$

where $m=\alpha+\beta$.
It would also be possible to apply Mackey's theorem if the group H was identified with a colouring group, although it is clear that the equivalence class groups L^{d} then obtained would be subgroups of the L^{d} obtained in this work. As M_{S} labelling is usually of less interest than the S, M_{S} labelling we shall not pursue this matter here. Nevertheless, it should be pointed out that this approach provides a feasible way of overcoming the difficulties encountered in the work of Newman (1982), where the characters of an S_{6} colouring were found insufficient in themselves to determine the equivalence class groups for six centres in an octahedral array.

The group theoretical method used in II bypasses this problem, using the induced representations of the chain

$$
\begin{equation*}
\mathrm{S}_{8} \supset \mathrm{~S}_{1} \otimes \mathrm{~S}_{7} \supset \mathrm{~S}_{1} \otimes \mathrm{~S}_{1} \otimes \mathrm{~S}_{6} \tag{4.1}
\end{equation*}
$$

to specify unique labels for all the S_{8} states of the configuration $1^{6} 2$ listed in table 3 of II. This approach also provides a method of generating table 3 of II without first obtaining table 2 of II combinatorially. The $2^{6}=64$ states of 1^{6} induce $64 \times 8!/ 6!=3584$ states of $1^{6} 2$. Unique labelling genealogies are given in figures 1 and 2 of II.

In the present work we again begin with the 64 states of the configuration 1^{6}. If we identify $G \equiv \mathrm{~S}_{8}$ and $H \equiv \mathrm{~S}_{1} \otimes \mathrm{~S}_{1} \otimes \mathrm{~S}_{6}$ in (2.2), the expression $\Delta \uparrow G$ corresponds to
the process of inducing these 64 states into S_{8} to produce the 3584 states of the configuration $1^{6} 2$. $(\Delta \uparrow G) \downarrow K$ therefore corresponds to the subduction of these states with respect to the spatial symmetry group, here identified as $G(192)$. The right-hand side of (2.2), which we have been using, first requires the identification of the groups L^{d} which, according to table 2 , may be identified as $\mathrm{F}_{1} \equiv \mathrm{O}$ and $\mathrm{F}_{2} \equiv \mathrm{D}_{2}^{\prime}$ in the present case.

The 64 states of 1^{6} are spanned by the representations $\left[2^{3}\right](S=0),\left[2^{2} 1^{2}\right](S=1)$, $\left[21^{4}\right](S=2)$ and $\left[1^{6}\right](S=3)$. These are subduced into O and D_{2}^{\prime} as shown in table 7 .

Table 7. Subduction of S_{6} representations into O and D_{2}^{\prime} and induction of O representations into $G(192)$.

Total spin	S_{6} representations	$\begin{aligned} & \mathrm{O} \\ & \text { representations } \end{aligned}$	$\begin{aligned} & \mathrm{D}_{2}^{\prime} \\ & \text { representations } \end{aligned}$	$\begin{aligned} & O \uparrow G(192) \\ & \text { representations } \end{aligned}$
$S=0$	$\left[2^{3}\right]$	A_{1}	A_{1}	$\mathrm{A}_{1}^{\Gamma}+\mathrm{A}_{1}^{\mathrm{X}}+\mathrm{A}_{1}^{\mathrm{L}}$
		A_{2}	B_{1}	$A_{2}^{\Gamma}+B_{1}^{\text {X }}+A_{2}^{L}$
		T_{2}	$\mathrm{A}_{1}+\mathrm{B}_{2}+\mathrm{B}_{3}$	$\mathrm{T}_{2}^{\Gamma}+\mathrm{B}_{2}^{\mathbf{x}}+\mathrm{E}^{\mathbf{x}}+\mathrm{A}_{1}^{\mathrm{L}}+\mathrm{E}^{\text {L }}$
$S=1$	$\left[2^{2} 1^{2}\right]$	A_{1}	A_{1}	$A_{1}^{\Gamma}+A_{1}^{x}+A_{1}^{L}$
		E	$\mathrm{A}_{1}+\mathrm{B}_{1}$	$\mathrm{E}^{\mathrm{r}}+\mathrm{B}_{1}^{\mathrm{x}}+\mathrm{A}_{1}^{\mathrm{x}}+\mathrm{E}^{\mathrm{L}}$
		T	$\mathrm{B}_{1}+\mathrm{B}_{2}+\mathrm{B}_{3}$	$\mathrm{T}_{1}^{\Gamma}+\mathrm{A}_{2}^{\mathrm{X}}+\mathrm{A}_{1}^{\mathrm{X}}+\mathrm{E}^{L}$
		T_{2}	$A_{1}+B_{2}+B_{3}$	$\mathrm{T}_{2}^{\Gamma}+\mathrm{B}_{2}^{\mathrm{X}}+\mathrm{E}^{\mathrm{X}}+\mathrm{A}_{1}^{\mathrm{L}}+\mathrm{E}^{\mathrm{L}}$
$S=2$	[21 ${ }^{4}$]	E	$\mathrm{A}_{1}+\mathrm{B}_{1}$	$\mathrm{E}^{\Gamma}+\mathrm{B}_{1}^{\mathrm{X}}+\mathrm{A}_{1}^{\mathrm{X}}+\mathrm{E}^{\mathrm{L}}$
		T_{2}	$A_{1}+B_{2}+B_{3}$	$\mathrm{T}_{2}^{\Gamma}+\mathrm{B}_{2}^{\mathrm{X}}+\mathrm{E}^{\mathbf{X}}+\mathrm{A}_{1}^{\mathrm{L}}+\mathrm{E}^{\mathrm{L}}$
$S=3$	$\left[1^{6}\right]$	A_{1}	A_{1}	$A_{1}^{\Gamma}+A_{1}^{\mathbf{X}}+A_{1}^{L}$

According to (2.2) the representations of $G(192)$ induced by these two sets of representations (for D_{2}^{\prime} and O) will span the complete set of 3584 states of $1^{6} 2$. Given that O contains 24 elements and D_{2}^{\prime} contains 4 elements we see that this corresponds to the breakdown

$$
\begin{equation*}
3584=64 \times 192 / 24+64 \times 192 / 4 \tag{4.2}
\end{equation*}
$$

A typical state labelling for an $S=2$ state with $L^{d}=\mathrm{D}_{2}^{\prime}$ would thus be (see table 7):

$$
\left[21^{4}\right], \mathrm{T}_{2}, \mathrm{~A}_{1} ; \mathrm{E}, \mathrm{~B}_{1}^{\times}
$$

corresponding to the sequence

$$
\begin{equation*}
\left[21^{4}\right] \downarrow O \downarrow D_{2}^{\prime} \uparrow O \uparrow G(192) \tag{4.3}
\end{equation*}
$$

It will be noted that there is no $1-1$ correspondence between the labels obtained in this way and the $S_{1} \otimes S_{1} \otimes S_{6} \uparrow S_{8} \downarrow G(192)$ labels obtained in II, apart from their common generation from states of the 1^{6} configuration.

Finally we note that groups O and D_{2}^{\prime} have a simple geometrical interpretation in terms of figure 2 with the colorations corresponding to F_{1} and F_{2} shown in table 2. In the case of F_{1} centres, 1 and 2 occupy fixed positions, allowing all the operations of the octahedral group O on the remaining six centres (labelled 3 to 8). In the case of F_{2}, the fixed centres are 1 and 3 , allowing only the operations $\mathrm{E}, \mathrm{C}_{2}^{\prime}(3), \mathrm{C}_{2}^{\prime}(6)$ and $\mathrm{C}_{2 x}$ in the group D_{2}^{\prime}. Unlike a (combinatorial) coloration problem, we are not simply interested in inducing the invariant representations of D_{2}^{\prime} and O into $G(192)$, and the
present problem involves the induction of all the 64 states of the configuration 1^{6} shown in the third and fourth columns of table 7. It will be apparent from the above discussion that O and D_{2}^{\prime} are equivalence class groups of $G(192)$, not of S_{8}.

5. Conclusion

It will be clear from the foregoing example that our method of labelling states using Mackey's theorem requires considerably more effort than the unique labelling scheme derived in II. Nevertheless, the identification of intersection groups (by the method described in the appendix) has considerable heuristic advantages in that it unites the group theoretical and combinatorial points of view.

The calculation of matrix elements using the formalism described in this paper may necessitate the generation of tables of coupling coefficients for the chains of groups considered in this work. However, the work of Seligman (1979) suggests that such tabulations could be bypassed.

Appendix. Determination of the intersection groups L^{d}

The main problem to be solved in finding the L^{d} is to construct the double coset decomposition $\mathrm{S}_{n}=\Sigma_{d} H d K$ for the space group K and various choices of configuration group $H^{d}=d^{-1} H d$. It is, however, relatively easy to obtain the right coset decomposition $\mathrm{S}_{n}=\mathbf{\Sigma}_{r} H r$ by direct tests with various $r \in \mathrm{~S}_{n}, r \notin H$. Supposing that a set of right coset representatives is known, it can be shown that $H r_{1}$ and $H r_{2}$ belong to the same double coset if, for some $h \in H, k \in K$,

$$
\begin{equation*}
h r_{1}=r_{2} k \tag{A1}
\end{equation*}
$$

Hence a simple, if somewhat lengthy method of finding all the double cosets is to first derive the right cosets and then use equation (A1) to group these into double cosets.

There are an equal number of right coset representatives and distinct subgroups $H^{r}=r^{-1} H r$ of S_{n}, each subgroup corresponding to a distinct 'coloration' (as defined in the caption to table 2). For example, in the case of the configuration $H=\mathrm{S}_{1} \otimes \mathrm{~S}_{1} \otimes \mathrm{~S}_{6}$ the coloration $\{1\}\{2\}\{345678\}$ varies according to which two centre labels are in the first two brackets. There are $8 \times 7=56$ such colorations, corresponding to $\left|\mathrm{S}_{8}\right| /\left|\mathrm{S}_{6}\right|$, and therefore 56 right cosets of $S_{1} \otimes S_{1} \otimes S_{6}$ in S_{8}.

Equation (A1) can then be used to relate 8 of these right cosets into the single double coset denoted in table 2 by the subgroup O and the remaining 48 cosets into the double coset denoted by D_{2}^{\prime}. This process was carried out on a computer by simply running through all possible h, k to find which colorations were equivalent.

The speed and storage requirements of the above procedure would make it prohibitive to carry out for n greater than 8 . However, sophisticated algorithms have been developed for the generation of double cosets (e.g. see Brown et al 1974) and these should make it practicable to study systems with larger numbers of centres.

References

Baake M, Gemünden B and Oedingen R 1982 J. Math. Phys. 23 944-53
Brown H, Hjelmeland L and Masinter L 1974 Discrete Math. 7 1-30
Chan K S and Newman D J 1982 J. Phys. A: Math. Gen. 15 3383-93

- 1983 J. Phys. A: Math. Gen. 16 2389-403

Koptsik V A and Evarestov R A 1980 Sov. Phys.-Crystallogr. 25 1-5
Ledermann W 1977 Introduction to Group Characters (Cambridge: CUP)
Littlewood D E 1958 The Theory of Group Characters (Oxford: Clarendon)
Newman D J 1982 J. Phys. A: Math. Gen. 15 3395-404
-_ 1983 J. Phys. A: Math. Gen. 16 2375-87
Seligman T H 1979 The Permutation Group in Physics and Chemistry, Lecture Notes in Chemistry vol 12, ed J Hinze (Berlin: Springer) pp 178-92

