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The unique labelling of states via Mackey’s theorem 

K S Chan and D J Newman 
Department of Physics, University of Hong Kong, Hong Kong 

Received 14 July 1983, in final form 19 August 1983 

Abstract. A new approach to finding unique labels for many-electron states in multicentre 
systems is described and a particular example (eight electrons in s-states on eight centres) 
is worked out in detail. This approach is shown to provide a labelling with a more direct 
physical interpretation than has previously been found. 

1. Introduction 

This paper is one of a series developing new methods for labelling the states of 
multicentre systems using the permutation group. The optimal choice of labelling 
methods is important in the physical interpretation of solutions as well as in the 
mathematical process of diagonalising Hamiltonians. ‘Unique’ labelling methods have 
the property that every state is completely described by a set of irreducible representa- 
tion labels for groups characterising the system. 

The long term aim of this series of papers is to find exact solutions to  the generalised 
Hubbard model for a variety of systems with a finite number of centres. These solutions 
can then be used as a test of approximative methods and to determine the forms of 
model Hamiltonian which most adequately describe electron localisation and intermedi- 
ate valence phenomena. 

Unique labelling in terms of the irreducible representation labels for a chain of 
groups depends on unique labelling for every group/subgroup link in the chain. This 
holds when the subduction (or reduction) of every irreducible representation of the 
group corresponds to a combination of irreducible representation labels of the subgroup 
with no repeats. The power of this method is considerably enhanced by the reciprocity 
theorem due to Frobenius (e.g. see Ledermann 1977, p 74), which states that the 
correlation tables for induced representations are the same as those for subduced 
representations. Hence unique labelling by subduction implies unique labelling by 
induction. In practice the choice between these procedures will be determined by 
which group in the chain is used to characterise the physical basis vectors. 

In a recent paper (Chan and Newman 1983, henceforth referred to  as paper 11) it 
has been shown possible to obtain a unique group theoretical labelling of all the many 
electron states generated by 1 ( < 2 n )  electrons in s-states on n centres. S ,  and its 
permutation subgroups were used in this labelling. Furthermore, it was shown possible, 
by introducing subgroup chains relating spatial symmetry groups to S8, to  obtain unique 
labels for all the states for systems where eight centres are fixed in cyclic regions (Chan 
and Newman 1982, henceforth referred to as paper I) or rigid isolated systems. 
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A feature of the above approach to S, labelling is that comparisons were made 
between a combinatoric method based on Polya’s theorem (Newman 1982) and a 
purely group theoretical method based on induced representation theory. Although 
the combinatoric method was shown to lead to a correct enumeration of the states 
(for n = 8),  it did not provide sufficient information for a unique labelling. The main 
problem with this approach is that it classifies states (colourings or other structures 
defined on the lattice) as equivalence classes of S,, which may then be difficult to 
resolve uniquely into equivalence classes of the spatial symmetry group (e.g. see the 
discussion in Newman (1982) and in 8 4 of this work). 

In this paper we shall present a third approach to this same problem which is as 
powerful as the induced representation approach and yet provides the heuristic advan- 
tage, characteristic of the combinatorial method, of identifying equivalence class groups. 
The relationship between the induced representation approach and our present tech- 
niques is shown symbolically in figure 1.  The group S, is decomposed into double 
cosets HdK, where the d’s are a set of elements of S, (called ‘double coset representa- 
tives’) chosen so that the corresponding set of double cosets spans all the elements in 
S,. In I1 we labelled the states spanned by S, by first inducing representations of H 
into S, to provide a unique labelling of the S, states, and then subducing these into 
K. Here we shall first obtain the set of intersection groups Ld and then determine the 
subduced representation labels for the chains H d  2 Ld and K 3 Ld (with suitable 
intermediate groups). 

L d : K n H a  

Figure 1. Subgroup relations relevant to the application of Mackey’s theorem. 

From the combinatoric point of view each total spin state S and Ms value of a 
configuration of states is regarded as a ‘structure’ defined on the n centres. Any state 
of the configuration (with given S, Ms)  may be transformed into any other state with 
the same S, Ms values under S,. Hence the set of all states of a configuration with 
given S, Ms may be regarded as a single equivalence class with respect to S,. This 
generalises the classical notion of an equivalence class because the antisymmetry of 
the states under particle exchange leads us to introduce negative characters (as in 11, 
table 2). In Newman (1982) it was remarked that every equivalence class could be 
related to the subgroup which left the structure generating the equivalence class 
invariant. The configuration groups are seen to fulfil this role in the present work for 
equivalence classes with respect to S,, although we do not restrict ourselves to the 
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identity representation of the configuration groups as is done in simple colouring 
problems. 

A single equivalence class with respect to S ,  will generally break into several 
equivalence classes with respect to its subgroups and, in particular, with respect to  
those subgroups which correspond to rigid spatial (or cyclic region) arrays of the n 
centres. As was remarked by Newman (1982), it is far from trivial to determine the 
way in which equivalence classes with respect to S ,  break down into equivalence classes 
with respect to spatial symmetry subgroups of S , .  The equivalence class groups 
generated by the total spin eigenstate configurations of eight electrons in s-states on 
eight centres will be the focus of our present investigation. We note that they can be 
identified with the groups Ld of figure 1, for these are the possible intersection groups 
between the configuration groups Hd and the spatial symmetry group K. 

2. General formulation 

The method we shall use is based on Mackey's theorem (Altmann 1977) and is related 
to the use of this theorem in labelling suggested by Newman (1983). Given the double 
coset decomposition of S , ,  

S, = E  HdK, 
d 

where the symbols have the interpretation given in the previous section, Mackey's 
theorem relates the representations as follows: 

where t ,  .1 represent induction and subduction, A is a representation of H and 
Ad(d-'hd) =A(h),  h E H .  Equation (2.2) neatly relates the paths in figure 1 used in 
our previous labelling scheme (on the left-hand side) with those we shall use in the 
present approach (on the right-hand side). 

In our new approach the first problem to be solved is to determine the set of groups 
Ld = K n Hd corresponding to  the intersection of the configuration symmetry ( H d )  
and the spatial symmetry K. This problem is best solved in non-trivial cases by symbolic 
computation (see the appendix). Character tables then have to be established for the 
groups Ld.  There must then be chains of intermediate groups between Ld and Hd 
and between Ld and K in order to ensure unique labelling for the subduction and 
induction processes on the right-hand side of (2.2). 

3. A worked example: eight electrons on eight sites 

We shall presume that the spatial symmetry of the eight sites is given by the 192-element 
cyclic region group described in I and denoted here by G( 192). 

It may also be of interest to the reader that the 384-element group called 05/2FCC 
in I is mentioned (among others) in the work of Koptsik and Evarestov (1980) as an 
'extended unit cell group'. A distinct 384-element cyclic region group with 20 classes 
also mentioned in that paper (as a factor group of 0;) is isomorphic with the hyper- 
octahedral group which has the character table given by Baake et a1 (1982). 
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We shall adopt the same notation for the irreducible representations of G(192) as 
was employed in I and shall not reproduce the character table here. Note that many 
other spatial symmetries correspond to subgroups of G(192), so that a solution for 
G(192) can be used to provide a range of other solutions. 

The elements of G(192) will be described using a two-number notation in which 
the first number denotes one of the 24 rotations defined by figure 2 and table 1, and 
the second is one of the eight cyclic translations defined by the centre labels in the 
same figure. For example, r2  = (1 ,2)  denotes a translation from centre 1 to centre 2 
(or a parallel translation of the same magnitude). In particular, r ,  = (1, 1) is the identity 
operation. We shall identify the intersection groups Ld with a set of elements given 
in this notation. 

As discussed in I1 there are five configurations for a system with eight electrons 
on eight sites according to whether no pairing of up and down spin electrons on a 
given site occurs (with configuration group S8),  one such pair occurs (S,OS,OS,), 
two pairs occur (SzOSzOS4), three pairs occur ( S 3 0 S 3 0 S 2 )  or all eight electrons are 

Figure 2. The eight distinct atoms in the cyclic region are shown together with labelling 
of rotation axes used in this work. Translations are labelled relative to the atomic positions 
relative to the central atom 1 .  

Table 1. Dictionary for the numerical labelling of the elements of the octahedral group. 
The axis labels are shown in figure 2. 

Label 1 2 3 4 5 6 7 8 
Rotation E c 2 x  CZy czz c,: c, c;, CJY 
Label 9 10 11 12 13 14 1s  16 
Rotation GZ c;, c;, c, c;, c, c;, c, 
Label 17 18 19 20 21 22 23 24 
Rotation C;D C ~ D  c;(5) c;(8) C;(7) Ci(6) Ci(4)  C;(3) 
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paired (S40S4) .  The groups Ld for each of these configurations have been calculated 
using the methods described in the appendix. Symbols for the groups Ld are defined 
in terms of their elements below and table 2 relates to isomorphic point groups. 

Table 2. Complete list of the groups L d  for all configurations of eight electrons in s-states 
on eight centres. Identifications are given with point groups, daggers indicating isomorphism 
but not physical equivalence. Coloration symbols denote the effect of the transformation 
d - ' ( S ,  0 S, OS8-,,,)d, e.g. for G,, d-'(S2{ 12}OS2{34}OS,{5678})d = S2{ 12}O S2{36}0 
S, {5478} denoted by {12}{36}{5478}. 

Configuration 
group L~ group 1 ~ ~ 1  Coloration References 

S 8  G (192) G (192) 192 

24 
4 
4 

16 
1 
8 
4 
4 
4 
2 
2 
4 
2 
2 
6 
2 
4 

32 
24 
24 

{ 12345678) 

{ 1}{2}{345678} 
{ 1}{3}{245678} 
{ 1 2}{ 3 4}{ 5 6 7 8} 
{ 12}{36}{5478} 
{ 13}{24}{5678} 
{ 13}{26}{4578} 
{13}{45X2678} 
{13}{47X5628} 
{ 13}{48}{2567} 
{123X456}{78} 
{ 1 2 3}{45 7X 6 8) 
{ 123}{467}{58} 
{ 134}{256}{78} 
{ 134)i258}{67} 
{134X267X58} 
{ 134X268}{57} 
{ 1234}{5678} 
( 1 2 36}{ 547 8) 
{1345}{2678} 
{ 1348}{2567} 

Chan and Newman 
( 1982) 
- 
- 
- 
as for D,OC, 

as for D,OC,  
- 

- 
- 
as for D, 
- 
- 
- 
- 
- 
- 
- 
- 
Table 3 

as for 0 
- 

3.1. Configurations S8 

As S8 3G(192j7 G(192) itself is the only Ld group. 

3.2. Configurations S l  OS1 OS, 

The double coset decomposition involves two groups which will be denoted F, and 
F2. Both groups do not contain any cyclic translations and we can identify F1 = 0 (as 
defined by figure 2) and F2={(1, l ) ,  (2, 11, (22, l ) ,  (24,1)}= Di. Here the prime 
distinguishes a subgroup of 0 containing two C ;  axes. 

3.3. Configurations S 2 0 S 2 0 S ,  

In this case the double coset decomposition requires seven groups as follows: 

G I  ={(I, 1 1 7  (4, 2)7 (19921, (20,1)} 
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group is given in table 3. Using the character tables we are then able to generate 
correlation relations, the most important of which are given in tables 4-8. These 
show that the reduction Ad J.Ld of (2.2) can be labelled uniquely in this configuration. 

G ( 1 9 2 )  O * @ U  

I 

I 
H L I  H, 

Figure 3. Subgroup relations between groups listed in table 1. The group U={E,  r 2 } .  
Other groups are defined in table 1 and in the text. D, is assumed to have its C, axis 
aligned in the x direction, while D; has a z alignment. Correlation tables 4-7 show that 
the group/subgroup relations in this figure provide a unique labelling of the G(192) 
representations of all states of the eight-electron system. 

The remaining problem is to find a unique labelling scheme for the group/subgroup 
chains connecting the configuration groups S, OS, OSR-2u with the Ld. The states to 
be considered can be derived from the columns of table 1 of I1 with n = 8 - 22.4 = 8, 6, 
4, 2 and 0. 

3.6. Configuration S8 
In this case it is necessary to find a chain of groups relating S 8  to G (  192) which allows 
for a unique labelling of the S, representations of interest as identified by the n = 8 
column in table 1 of 11. A general solution of this labelling problem was given in I by 
introducing as intermediate groups the alternating group A, and the subgroup [8] + 
[42]+[24]+[18] (in the notation of Littlewood (1958, appendix)). As this was the least 
straightforward problem to solve using the previous method, it cannot be claimed that 
the present approach simplifies the analysis. 
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Table 3. Character table for the group I, = D, A (E, t,, tj, f6). Class labels are defined by 
figure 2 with the C, axis in the x direction and as follows. I(  = 1,) is a translation along 
the C, axis; rb( = 1, or t,) is a translation in the 'basal plane', perpendicular to the C, axis; 
C, = C:; C,, is about an axis in the basal plane in the primitive vector direction; CSb is 
about axes at 45" to the CZb in the basal plane. CZbt[ has r, and the C, axis parallel, while 
C2br; has them perpendicular. C,t  and C;bt each have two members corresponding to  
pure rotations, and two combining these with 1. 

~~~ ~ ~ ~~ ~ ~~~ ~ ~ ~ 

Class E C, C,r C i b r  CZb CZbtl' t b  C2tb C2btb Czbtg r C2bfb C,t C,tb 
O r d e r 1 1  1 4  2 2 2 2 2 2 1 4  4 4 

( D , ) A ~  1 1 1 1 1 1 1 1 1 1  1 1 1 1  
A i  1 1 1 -1  -1 -1 1 1 -1 -1 1 - 1  1 1  
BY 1 1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 
B r 1  1 1 - 1  1 1 1 1 1 1  1 -1 -1 -1 

(DJA? 1 1 1 1 1 -1 -1 -1 1 -1 1 -1 1 -1 
AY 1 1 1 -1 -1 1 -1 -1 -1 1 1 1  1 - 1  
B Y 1  1 1 1 - 1  1 - 1  -1 -1 1 1 -1 -1 1 
BY 1 1 1 -1 1 -1 -1 -1 1 -1 1 1 - 1  1 

( D , ) A : ~  2 -2 o 2 o 0 0 -2 0 -2 o o o 

E r 2 - 2  -2 0 0 0 2 -2 0 0 2 0 0 0 

E M 2 - 2  -2 0 0 0 -2 2 0 0 2 0 0 0 

B p 2 2 - 2  0 - 2  0 0 0 2 0 - 2  0 0 0 
B F 2 - 2  2 0 0 2 0 0 0 -2 -2 0 0 0 
B F 2 - 2  2 0 0 -2 0 0 0 2 -2 0 0 0 

3.7. Configuration S, OS, OS, 

The S, representations may be reduced with respect to the octahedral group F1 = 0 
by noting the following correspondence between classes (see figure 2 ) :  

S6classes: l6 1222 124 32 2' 

0 classes: E C2 C, C3 Ci. 

Comparison of the character tables then gives the following subductions of the configur- 
ation group representations: 

[2 ' ]+AI+A2+T2 

[214]+E+T2 [ 16] + A l .  

[ 2' 1 '1 + A + E + TI + T2 

In the case F2 = D; a direct correlation between the irreducible representations 
does not lead to a unique labelling. We may, however, introduce an intermediate 
octahedral group which will enable a unique labelling to be made following the chain 

S l (1 )OSl (3 )OS, (245  6 7 8 ) 3 0 ' 3 D ; .  

In this equation 0' is the transform of 0 produced by interchanging the centre labels 
2 and 3. We may then use the correlations given above for the first link in the chain 
and table 4 of I for the second link. 

3.8. Configuration S 2 0 S 2 0 S 4  

Correlation relations for all the Ld groups of this configuration are given in table 4. 
This table shows that all reductions are unique except for the case of G3 and G4, so 
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Table 4. Correlation relations for Ld groups of the configuration S 2 0 S 2 0 S 4 .  Bracketed 
(isomorphic) groups indicate the irreducible representation labelling that is employed. 

that further consideration will only be given to these two cases. We are interested in 
the action of this group on the four centre labels 4578 which are permuted by S, (see 
table 2 ) .  In this case the elements ( 1 , 3 )  and ( 2 4 , l )  (for example) of G, cannot be 
distinguished, both corresponding to the permutation (48)(57).  We therefore find that 
G4 reduces to a group Gk which is isomorphic to D2 when acting on the centre labels 
4578, namely 

We are therefore concerned to find a group intermediate between this group and S,. 
A suitable group is obtained by introducing the additional elements (48)(5)(7),  
(57)(4)(8),  (4785) and (4587) giving a group isomorphic to DZd which may be related 
to S4 through its isomorphism to Td. The appropriate correlations are shown in table 5 .  

Finally we note that all the representations of C ,  can be labelled uniquely by using 
the sequence C1 c D;= S4, where the relation between D; and S, is isomorphic to that 
between G1 and S4 (see table 3). 

Table 5. Correlation table for G ,  using an intermediate group isomorphic to D2, (see text). 

3.9. Configuration S 3 0 S 3 0 S 2  

In this case there are only two one-dimensional representations of S 2  to consider. 
Their reductions with respect to the groups Hi are shown in table6. There are no 
problems with unique labelling as the S2 representation labels are themselves unique. 

Table 6. Correlation table for the group Hi. 
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3.10. Configuration S4 OS4 
The [4]0[4] representation is one-dimensional, so that no labelling problems arise. 

4. A comparison of methodology 

In this section we shall compare the labelling schemes for eight electrons in s-states 
on eight centres developed in I1 with that developed in the present work. For this 
purpose it will be sufficient to compare these approaches for the configuration 162. 
According to table 3 of I1 there are 3584 states in this configuration. A combinatoric 
method was used to obtain the S8 characters for these states corresponding to their 
Ms values (see table 2 of 11). This method was based on looking at the possible ways 
of 'colouring' a certain number of centres with labels corresponding to the spin 
arrangement on each centre, etc (i.e. a = t, b = L, c = TJ).  In fact the combinatorial 
results in table 2 of I1 can readily be obtained by inducing the identity representation 
of the 'colouring' group S,OS,OS,OS,-,-,-, where a is the number of a labels, 
P the number of b's and y the number of c's. These colouring groups are in fact 
subgroups of the configuration groups S o + ,  OSyOSB--a--P-y used in the group theoreti- 
cal approach of 11. 

In order to cope with the antisymmetry of electrons under interchange a rather ad 
hoc extension of the combinatorial procedure was introduced in 11. This can easily be 
shown to correspond to inducing the representation [1"]0[lP10[ylC3[8- a - P  - y ]  
rather than the identity representation [a]@[p]@[y]@[8- a - P  - y]. 

With this reformulation of the combinatoric method in group theoretical terms it 
becomes easy to obtain unique labels for the irreducible representations corresponding 
to Ms labels. We simply insert the same series of intermediate groups that was used 
in the group theoretical (i.e. configuration group) approach in 11, namely 

S" ~ S , @ S , - ,  ~s,os,os,-,-, ~ s ~ o s , o s , o s , ~ , ~ , - ,  
where m = a + p .  

It would also be possible to apply Mackey's theorem if the group H was identified 
with a colouring group, although it is clear that the equivalence class groups Ld then 
obtained would be subgroups of the Ld obtained in this work. As Ms labelling is 
usually of less interest than the S, Ms labelling we shall not pursue this matter here. 
Nevertheless, it should be pointed out that this approach provides a feasible way of 
overcoming the difficulties encountered in the work of Newman (1982), where the 
characters of an S, colouring were found insufficient in themselves to determine the 
equivalence class groups for six centres in an octahedral array. 

The group theoretical method used in I1 bypasses this problem, using the induced 
representations of the chain 

S 8  2 s, os, =I s, os1 os, (4.1) 

to specify unique labels for all the Ss states of the configuration 162 listed in table 3 
of 11. This approach also provides a method of generating table 3 of I1 without first 
obtaining table 2 of I1 combinatorially. The 26 = 64 states of l6 induce 64 x 8!/6! = 3584 
states of 162. Unique labelling genealogies are given in figures 1 and 2 of 11. 

In the present work we again begin with the 64 states of the configuration 1'. If 
we identify G = SR and H = S I  OS, OS6 in (2.21, the expression AT G corresponds to 
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the process of inducing these 64 states into S8 to produce the 3584 states of the 
configuration 1'2. ( A T  G) J. K therefore corresponds to the subduction of these states 
with respect to the spatial symmetry group, here identified as G(192). The right-hand 
side of (2.2), which we have been using, first requires the identification of the groups 
Ld which, according to table 2, may be identified as F1 = 0 and Fz = D; in the present 
case. 

The 64 states of l6 are spanned by the representations [Z3] ( S  = 0), [2212] ( S  = l) ,  
[214] (S = 2) and [l'] (S = 3). These are subduced into 0 and D; as shown in table 7. 

Table 7. Subduction of S, representations into 0 and D; and induction of 0 representations 
into G (  192). 

~ ____ ~ _ _ _ _  ~______ ~~ 

Total 0 D i  OTG( 192) 
spin S ,  representations representations representations representations 

S=O [z31 AI 
A2 
7-2 

s =  1 122121 AI 
E 
TI 
7-2 

s=2 w41 E 
T2 

s=3 [I6] AI 

A1 
Bi 
A, + B2 + B, 
AI 
Al+Bl  
B, + B2 + B3 
A, + B2+ B, 
A l + B l  
A, + B 2 +  B, 
AI 

A;+A:+A: 
A;+ B:+A: 
T;+ B : + E ~ + A : + E ~  
A ~ + A : + A :  
E ~ + B : + A : + E ~  
T;+ A: +A: + 
T;+ B:+E~+A:+ 
E~+B:+A:+E~ 
T;+ B:+ +A:+ 
A:+ A:+A: 

According to (2.2) the representations of G(192) induced by these two sets of 
representations (for D; and 0) will span the complete set of 3584 states of 1'2. Given 
that 0 contains 24 elements and D; contains 4 elements we see that this corresponds 
to the breakdown 

3584 = 64 X 192124 + 64 X 19214. (4.2) 

A typical state labelling for an S = 2 state with Ld = D; would thus be (see table 7): 

corresponding to the sequence 

[2i41 5. OJD;TOTG(IW).  (4.3) 

It will be noted that there is no 1-1 correspondence between the labels obtained in 
thisway and theS10S10SgTSgJ.G(192)  labelsobtainedinI1,apart from theircommon 
generation from states of the l6  configuration. 

Finally we note that groups 0 and D; have a simple geometrical interpretation in 
terms of figure 2 with the colorations corresponding to F1 and Fz shown in table 2. In 
the case of F1 centres, 1 and 2 occupy fixed positions, allowing all the operations of 
the octahedral group 0 on the remaining six centres (labelled 3 to 8). In the case of 
F2, the fixed centres are 1 and 3, allowing only the operations E, C;(3), C;(6) and 
CZx in the group D;. Unlike a (combinatorial) coloration problem, we are not simply 
interested in inducing the invariant representations of D; acd 0 into G( 192), and the 



264 K S Chan and D J Newman 

present problem involves the induction of all the 64 states of the configuration l6 
shown in the third and fourth columns of table 7. It will be apparent from the above 
discussion that 0 and D; are equivalence class groups of G(192), not of S8. 

5. Conclusion 

It will be clear from the foregoing example that our method of labelling states using 
Mackey’s theorem requires considerably more effort than the unique labelling scheme 
derived in 11. Nevertheless, the identification of intersection groups (by the method 
described in the appendix) has considerable heuristic advantages in that it unites the 
group theoretical and combinatorial points of view. 

The calculation of matrix elements using the formalism described in this paper may 
necessitate the generation of tables of coupling coefficients for the chains of groups 
considered in this work. However, the work of Seligman (1979) suggests that such 
tabulations could be bypassed. 

Appendix. Determination of the intersection groups Ld 

The main problem to be solved in finding the Ld is to construct the double coset 
decomposition S, = E d  HdK for the space group K and various choices of configuration 
group H d  = d-’Hd. It is, however, relatively easy to obtain the right coset decomposi- 
tion S, = Er Hr by direct tests with various r E S,, r $ H. Supposing that a set of right 
coset representatives is known, it can be shown that Hrl and Hr2 belong to the same 
double coset if, for some h E H, k E K,  

hr, = r2 k. (AI )  

Hence a simple, if somewhat lengthy method of finding all the double cosets is to first 
derive the right cosets and then use equation ( A l )  to group these into double cosets. 

There are an equal number of right coset representatives and distinct subgroups 
H‘ = r-’Hr of S,, each subgroup corresponding to a distinct ‘coloration’ (as defined 
in the caption to table 2).  For example, in the case of the configuration H = S,OSI os6 
the coloration {1)(2}{345678} varies according to which two centre labels are in the 
first two brackets. There are 8 X 7 = 56 such colorations, corresponding to lS81/lS61, 
and therefore 56 right cosets of SIOSIOSb in Sa. 

Equation (Al )  can then be used to relate 8 of these right cosets into the single 
double coset denoted in table 2 by the subgroup 0 and the remaining 48 cosets into 
the double coset denoted by D;. This process was carried out on a computer by simply 
running through all possible h, k to find which colorations were equivalent. 

The speed and storage requirements of the above procedure would make it prohibi- 
tive to carry out for n greater than 8. However, sophisticated algorithms have been 
developed for the generation of double cosets (e.g. see Brown et a1 1974) and these 
should make it practicable to study systems with larger numbers of centres. 
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